Grain growth of ZnO in binary ZnO-V₂O₅ ceramics

H. H. HNG, K. Y. TSE *School of Materials Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 E-mail: ashhhng@ntu.edu.sg*

Grain growth of ZnO during liquid-phase sintering of binary $ZnO-V₂O₅$ ceramics has been studied for V_2O_5 contents from 0.5 to 4 mol% and sintering from 900 $°C$ to 1200 $°C$. The results are discussed and compared with previous studies in terms of the phenomenological kinetic grain growth expression:

$$
G^n-G_0^n=K_0t\exp(-Q/RT).
$$

Addition of V₂O₅ is found to decrease the ZnO grain growth exponent, *n*, as well as the apparent activation energy, *Q*. The activation analysis also reveals a change in the rate-controlling mechanism for ZnO grain growth. Following a low-V₂O₅-content (\leq 2 mol%) of nearly constant Q values of about 88 kJ/mol, further V_2O_5 additions cause an increase of the *Q* value to about 115 kJ/mol. Consistent with accepted models of liquid-phase sintering, it is concluded that the rate-controlling mechanism of ZnO grain growth during liquid-phase sintering in the presence of V_2O_5 changes from one of a phase-boundary reaction at low V_2O_5 levels to one of diffusion through the liquid phase at more than 2 mol% V2O5 levels. ^C *2003 Kluwer Academic Publishers*

1. Introduction

Zinc oxide ceramic varistors derive their non-linear current-voltage behaviour from the addition of small amounts of other metal oxides, such as $Bi₂O₃$, $Pr₆O₁₁$, $MnO₂$ and $Co₃O₄$ [1–7]. Until recently, it was believed that effective varistor-forming ingredients were heavy elements with large ionic radii, such as bismuth [2, 3], praseodymium [4, 5], and barium [6, 7], but studies have now shown that the $ZnO-V₂O₅$ system also exhibits varistor behaviour [8–17]. This system is of interest because the ceramic can be sintered at a relatively low temperature of about 900◦C. This is important for applications in which it can be a multi-layered chip component, because it can be co-fired with a silver inner-electrode (m.p. 961◦C) without using the expensive palladium or platinum metals.

Electrical properties of these ZnO ceramic varistors are directly dependent on the microstructure as the ZnO grain size affects the varistor breakdown voltage per unit thickness [1–7]. There have been a number of studies addressing the sintering and grain growth of pure ZnO [18, 19] and the ZnO-Bi₂O₃ ceramic system [20–22], as it is important to fundamentally understand the microstructural development of ZnO ceramics. Although there have been studies investigating the grain growth phenomenon in ZnO with V_2O_5 additions [10], activation analyses of grain growth have not been attempted. Other than our preliminary report on a ZnO-1 mol% V_2O_5 ceramic [23], the role of V_2O_5 -rich phase as it affects the grain growth kinetics of ZnO has not been quantitatively documented. In view that V_2O_5 - doped ZnO varistors have the potential of replacing $Bi₂O₃$ -doped ZnO varistors due to its low sintering temperature, a detailed analytical study of the ZnO grain growth in the $ZnO-V₂O₅$ ceramic system has to be done.

Hence, in this work, we will address the effects of V_2O_5 additions (0.5 to 4 mol%) in a quantitative manner by using an activation analysis of the kinetic parameters of ZnO grain growth, specifically the kinetic grain-growth exponent and the apparent activation energy for grain growth. These parameters are obtained from the phenomenological kinetic grain growth equation [21, 22]:

$$
Gn - G0n = K0t \exp(-Q/RT)
$$
 (1)

where G is the average grain size at time t , the n value is the kinetic grain growth exponent, K_0 is the preexponential constant of the material, *Q* is the apparent activation energy, *R* is the universal gas constant, and *T* is the absolute temperature. In this study, the initial grain size, *G*o, is significantly smaller than the grain size, *G*, at some later time. Thus, *G*^o can be neglected, and Equation 1 simplifies to

$$
Gn = Kot \exp(-Q/RT)
$$
 (2)

which will be used throughout this study.

2. Experimental procedures

High purity oxide powder starting materials were used for the preparation of the $ZnO-V_2O_5$ samples. Four compositions, 0.5, 1, 2 and 4 mol% V_2O_5 were investigated. The powder mixtures were ball-milled for 24 hrs using alumina balls in deionised water. The mixtures were filtered, dried and pressed into pellets of 13 mm diameter and 3 mm thickness. The pellets were then sintered at four temperatures (900, 1000, 1100 and $1200°C$) for 4 hrs. Another series of specimens are sintered at 900◦C for five different times (0.5, 1, 2, 4 and 8 hrs). Heating and cooling rates of 5◦C/min were used. According to the $ZnO-V₂O₅$ phase diagram [24, 25], ZnO has a eutectic reaction with Zn₃(VO₄)₂ at ∼890°C. Thus, sintering temperatures $\geq 900^{\circ}$ C were chosen in this study to ensure that the vanadium-rich liquid phase will enhance the densification of the samples. Densities were calculated from the weights and dimensions of the ceramic bodies.

Microstructures of the samples were observed using a scanning eletron microscope (JEOL JSM-5310) operated at 20 kV. The sintered specimens were cut diametrically using low speed diamond saw, and mounted with conductive resin. The samples were then ground with 600–1000 grit SiC paper, and finally polished to 1μ m surface finish using diamond paste. The surface were etched with 2% nital for about 1 min. Grain sizes were measured directly from the micrographs of the etched samples by the linear intercept technique described by Mendelson [26]. The average grain size, *G*, was obtained as

$$
G = 1.56 \,\bar{L} \tag{3}
$$

where \bar{L} is the average grain-boundary intercept length of a series of random lines on the micrographs.

3. Results

3.1. Density

Relative densities of the various $ZnO-V₂O₅$ samples sintered at different temperatures and times are shown in Fig. 1. Densities of the four systems remained rather constant over the range of sintering times studied (Fig. 1a). However, the relative density decreased with increasing sintering temperature (Fig. 1b), which is most probably due to volatility of V_2O_5 at high temperature. This was also observed by Tsai and Wu [9] in their $ZnO-V₂O₅$ binary systems.

3.2. Microstructural observations

Microstructural features of all the sintered $ZnO-V₂O₅$ samples are similar, except for the average ZnO grain size. They showed the following features: (1) large grains dispersed in a matrix composed of small grains and (2) the large grains having oblong shape. Such exaggerated ZnO grain growth was often found in V_2O_5 doped ZnO ceramics [8–17]. It was the high reactivity of the vanadium-rich liquid phase during sintering which caused such abnormal grain growth. However, the microstructure becomes more uniform as sintering temperature and time increases.

Microstructures of the series of $ZnO-V₂O₅$ ceramics sintered at 900◦C for 8 hrs are illustrated in Fig. 2. The average ZnO grain size initially increases with increasing V_2O_5 content up to 2 mol%. A further increase

 (a) 100

Figure 1 Effect of sintered density of $ZnO-V₂O₅$ samples with (a) sintering time (sintered at 900◦C) and (b) sintering temperature (sintered for 4 hrs).

1300

of V_2O_5 content to >2 mol% causes a decrease in the grain size (Fig. 3). Tsai and Wu [9] also reported a similar trend for the effect of V_2O_5 on the grain growth of ZnO. They reported that ZnO grain growth is enhanced over that of pure ZnO with only a 0.25 mol% addition of V_2O_5 , and observed a reduction of grain size at 2 mol% $V₂O₅$. However, they did not complete an activation analysis to identify the rate-controlling mechanism. It is reasonable to expect that this change in trend of the final grain size may correspond to a transition in the rate-controlling mechanism of the ZnO grain growth.

3.3. Activation analysis of kinetic grain-growth parameters

The phenomenological kinetic grain growth equation given by Equation 2 can be readily plotted in the form:

$$
\log G = \frac{1}{n} \log t + \frac{1}{n} \left[\log K_0 - 0.434 \left(\frac{Q}{RT} \right) \right] \tag{4}
$$

From the slope of the log *G* versus log *t* line, which is $1/n$, the grain growth kinetic exponent *n* is readily determined. Fig. 4 illustrates the isothermal grain growth results for the various $ZnO-V₂O₅$ samples sintered at 900 \degree C in the form of Equation 4. The *n* value varies with V_2O_5 content, as summarised in Table I. Samples containing 0.5, 1 and 2 mol% V_2O_5 content have similar *n* values ranging between 1.5 to 1.8, while sample containing 4 mol% V_2O_5 has a higher *n* value of 2.69. Our previous work [23] on ZnO-1 mol% V_2O_5 showed a *n*

Figure 2 Microstructures in the ZnO-V₂O₅ systems sintered at 900°C for 8 hrs: (a) 0.5 mol% V₂O₅, (b) 1 mol% V₂O₅, (c) 2 mol% V₂O₅, and (d) 4 mol% V_2O_5 .

Figure 3 Average ZnO grain size versus V_2O_5 content (in mol%) for samples sintered in air for 4 hrs.

value of 1.44, which is very close to the value of 1.52 obtained in this study. Moreover, our result also agrees well with Tsai and Wu [9], who obtained 1/*n* values ranging from 0.63 to 0.83 (equivalent to *n* values of 1.20 to 1.59) for 0.5 mol% to 2 mol% V_2O_5 . The *n* values for $ZnO-V₂O₅$ systems are lower compared to the value of 3 for pure ZnO [21], indicating V_2O_5 -doped ZnO has a faster grain growth rate than pure ZnO.

To determine the value of activation energy, *Q*, for grain growth, Equation 2 can be expressed as

$$
\log\left(\frac{G^n}{t}\right) = \log K_o - \frac{0.434Q}{R}\left(\frac{1}{T}\right) \tag{5}
$$

so that slopes of the Arrhenius plots of $log(G^n/t)$ versus 1/*T* yield values of *Q* for grain growth. To compare the values of Q and K_0 for the four compositions, it is necessary to have the same units for these quantities. As *n* has a direct bearing on the units, particularly those of the preexponential term, K_0 , the average *n* value of the four compositions $(n = 2)$ is used to construct the respective Arrhenius plots (Fig. 5). The activation energies *Q* derived from the slopes of the Arrhenius plots are 90 \pm 6 kJ/mol for 0.5 mol% V_2O_5 , 87 \pm 9 kJ/mol for 1 mol% V_2O_5 , 87 ± 6 kJ/mol for 2 mol% V_2O_5 , and 115 ± 24 kJ/mol for 4 mol% V₂O₅. The *Q* values are virtually identical for V_2O_5 content ranging from 0.5– 2 mol%, suggesting that the mechanism for ZnO grain growth is identical for all these three V_2O_5 -containing compositions. At higher V_2O_5 content, the activiation energy is observed to increase, which indicates a change in the grain growth mechanism. It is also worth noting that the Q values for V_2O_5 -containing compositions are consistently lower than the activation energy of pure ZnO, 224 ± 16 kJ/mol [21].

From the plots in Fig. 5, it is also possible to estimate the preexponential term, K_0 , in Equation 2. The results of which are summarised in Table I. The preexponential factor contains the concentration of the solid in the liquid, the atomic volume of the solid, the

TABLE I Grain growth parameters

n	O (kJ/mol)	K_0 (μ m ² /h)
1.60	90 ± 6	3.9×10^{5}
1.52	$87 + 9$	3.7×10^5
1.79	$87 + 6$	3.0×10^{5}
2.69	115 ± 24	17.3×10^{5}

Figure 4 Grain growth of ZnO-V₂O₅ samples sintered at 900°C for various sintering times: (a) 0.5 mol% V₂O₅, (b) 1 mol% V₂O₅, (c) 2 mol% V₂O₅, and (d) 4 mol% V_2O_5 .

solid-liquid surface energy, and either the interface reaction rate constant or the diffusivity of the solid through the liquid, depending on the rate controlling process. The K_0 values remain rather constant for V_2O_5 content up to 2 mol%, and increases significantly with further V_2O_5 addition to 4 mol%. This further supports the premise that the grain growth mechanism is the same for V_2O_5 compositions up to 2 mol%, and that a change in the rate controlling process is observed for higher V_2O_5 content. Unfortunately, the units of the K_0 terms for pure ZnO are not the same as for the $V₂O₅$ -containing compositions, so that term cannot be directly compared.

4. Discussion

It has been shown that the rate-controlling grain growth mechanism in pure ZnO involves solid-state diffusion of the Zn^{2+} cations within the ZnO lattice, and that the apparent activation energy, Q , is about 224 ± 16 kJ/mol [21]. Analyses on $ZnO-Bi₂O₃$ systems [21, 22] has found that the *Q* value decreases significantly with small addition of about 0.5 wt% $Bi₂O₃$, which remains constant up to about 4 wt%, and subsequently increases with further addition of $Bi₂O₃$. It is claimed that the initial decrease in the *Q* value is due to the change in the mechanism for ZnO grain growth from solid-state diffusion of Zn^{2+} for pure ZnO to solution-precipitation for the liquid phase sintering in the presence of Bi-rich liquid. As the content of $Bi₂O₃$ increases, the thickness of liquid layer also increases. For addition of $Bi₂O₃$ up to 4 wt%, the ZnO grain growth rate is controlled by the solution-precipitation phase boundary reaction. Grain growth with this mechanism is independent of the thickness of the liquid layer, and hence, the grain growth rate is not reduced even though the content of $Bi₂O₃$ or thickness is increased. However, at higher $Bi₂O₃$ content >4 wt%, the mechanism changes to diffusion through the intergranular liquid layer. The grain growth rate is now inversely related to the thickness of the liquid layer between grains. As the thickness of liquid layer increases, the increased diffusion distance through liquid layer reduces the rate of ZnO grain growth, as observed in the increase in the *Q* value.

The Q values of the ZnO-V₂O₅ systems obtained in this current work vary with the V_2O_5 content in a similar manner as the $ZnO-Bi₂O₃$ system. Initial addition of 0.5 mol% V_2O_5 decreases *Q* significantly. This value remains rather constant up to 2 mol% V_2O_5 , and increases when V_2O_5 content is further increased to 4 mol%. Hence, it is possible to postulate that the ZnO grain growth mechanism varies with V_2O_5 content in a similar way as the $ZnO-Bi₂O₃$ system. It changes from solid state diffusion of Zn^{2+} for pure ZnO to phase boundary controlled precipitation-solution reaction for V_2O_5 addition of up to 2 mol%. The mechanism

Figure 5 Arrhenius plots for grain growth of ZnO-V₂O₅ ceramics: (a) 0.5 mol% V₂O₅, (b) 1 mol% V₂O₅, (c) 2 mol% V₂O₅, and (d) 4 mol% V₂O₅.

changes to grain boundary controlled when V_2O_5 addition is further increased to 4 mol%. It is also worth noting that Q values for all the ZnO-V₂O₅ systems are lower than that for pure ZnO [21] and ZnO-Bi₂O₃ systems [21, 22]. This indicates that a faster grain growth rate is achieved with V_2O_5 doping.

5. Conclusion

Grain growth behaviour of ZnO during liquid phase sintering of binary $ZnO-V₂O₅$ ceramics with 0.5 to 4 mol% V_2O_5 has been systematically studied. The ZnO grain size increases as $V₂O₅$ content is increased up to 2 mol%. Subsequent increase in V_2O_5 content causes a reduction in the grain size. The kinetic grain growth exponent *n* varies with V_2O_5 content and ranges from 1.52 to 2.69. *Q* values decrease significantly for V_2O_5 -doped ZnO as compared to pure ZnO. For the range of 0.5–2 mol% V_2O_5 , *Qand* K_0 remains rather constant. Further addition of V_2O_5 increases both Q and K_0 values. These results show that mechanism for ZnO grain growth changes with V_2O_5 content. It is postulated that the mechanism changes from solid-state diffusion of Zn^{2+} within the lattice for pure ZnO, to solution-precipitation liquid phase sintering for V_2O_5 -doped ZnO. For 0.5–2 mol% of V_2O_5 , the reaction is grain boundary controlled solution-precipitation, whereby grain growth is independent of the thickness of liquid layer. It changes to diffusion through intergranular liquid layer as V_2O_5 addition increases to 4 mol%, in which grain growth is liquid thickness dependent.

References

- 1. T. K. GUPTA, *J. Amer. Ceram. Soc.* **73** (1990) 1817.
- 2. M. MATSUOKA, *Jpn. J. Appl. Phys.* **10** (1971) 736.
- 3. E. OLSSON and G.L. DUNLOP , *J Appl. Phys.* **66** (1989) 3666.
- 4. K. MUKAE, K. TSUDA and I. NAGASAWA, *Jpn. J. Appl. Phys.* **16** (1977) 1361.
- 5. A. B. ALLES and V. L. BURDICK, *J. Appl. Phys.* **70** (1991) 6883.
- 6. M. MATSUOKA, T. MASUYAMA and Y. IIDA, *Jpn. J. Appl. Phys.* **8** (1969) 1275.
- 7. J. FAN and R. FREER, *J. Mater. Sci.* **32** (1997) 415.
- 8. J. K. TSAI and T. B. W U, *J. Appl. Phys.* **76** (1994) 4817.
- 9. *Idem.*, *Jpn. J. Appl. Phys.* Part 1 **34** (1995) 6452.
- 10. *Idem*., *Mater. Lett.* **26** (1996) 199.
- 11. C. S. CHEN, C. T. KUO, T. B. WU and I. N. LIN, Jpn. *J. Appl. Phys.* Part 1 **36** (1997) 1169.
- 12. C. T. KUO, C. S. CHEN and I. N. LIN, *J. Amer. Ceram. Soc.* **81** (1998) 29.
- 13. *Idem*., *ibid.* **81** (1998) 2949.
- 14. H. H. HNG and K. M. KNOWLES , *J. Eur. Ceram. Soc.* **19** (1999) 721.
- 15. *Idem*., *J. Amer. Ceram. Soc.* **83** (2000) 2455.
- 16. H. H. HNG, K. M. KNOWLES and P. A. MIDGLEY, *ibid.* **84** (2001) 435.
- 17. H. H. HNG and ^P . L. CHAN, *Mater. Chem. Phys.* **75** (2000) 61.
- 18. T. K. GUPTA and R. L. COBLE, *J. Amer. Ceram. Soc.* **51** (1968) 521.
- 19. ^S . K. DUTTA and R. M. SPRIGGS , *ibid.* **53** (1970) 61.
- 20. J. WONG, *J. Appl. Phys.* **51** (1980) 4453.
- 21. T. SENDA and R. C. BRADT, *J. Amer. Ceram. Soc.* **73** (1990) 106.
- 22. D. DEY and R. C. BRADT, *ibid.* **75** (1992) 2529.
- 23. H. H. HNG and L. HALIM, *Mater. Lett*. **57** (2003) 1411.
- 24. J. J. BROWN and F .A. HUMMEL, *Trans. Br. Ceram. Soc.* **64** (1965) 419.

25. V. A. MARAKOV, A. A. FOTIEV and L. N. SEREBRYAKOVA, *J. Inorg. Ceram*. **16** (1971) 1515.

26. M. I. MENDELSON, *J. Amer. Ceram. Soc.* **52** (1969) 443.

Received 15 July 2002 and accepted 21 February 2003